Comments on Dark Energy Experiments

Tim Mckay
July 14, 2001

Outline:
• General comments on techniques
• Some scary lensing details
• Comments on survey depths
Measurements of dark energy

Basic approaches:

Cluster counting
- X-ray selection: Flux limited
- SZ surveys: redshift independence
- Lensing surveys: clean mass selection?
- Optical surveys (!)

Structure Formation
- Galaxy LSS from spectroscopic surveys
- Weak lensing power spectrum

Angular diameter distance
- Strong lensing statistics

Luminosity distance
- Type Ia SNe
What to worry about…

Age of statistical astronomy, large samples are not a problem

Systematics will limit all these experiments: Predictions must include estimates of these

Cluster counting:

Mass thresholds, cluster evolution…

Structure formation:

Bias, selection function….

Strong lens surveys:

Selection effects, halo profiles….
An example from lensing, mass scale...
Some predictions…

SNe will play a key role:

– Discovered dark energy
– Local physics….
– Systematics known
 Evolution
 Dust
 Malmquist bias
 Lensing magnification

Ground or space?
Comparison of ground and space based optical surveys

We have completed detailed comparisons of ground based and space based optical surveys from first principles

Gary Bernstein, 2001, submitted to PASP

- Calculations for PSF photometry
- Includes undersampled and dithered images
- Includes cosmic ray rates
- Includes intra-pixel sensitivity variations (10% gutters)
- Calculated for point source and galaxy photometry
- Determines astrometric errors
- Determines galaxy shape errors

Allows us to answer some commonly arising questions about imaging strategies:

- What amount of dithering is ideal?
- What pixel size optimizes the productivity of a camera?
- Which is more efficient; space-based or ground-based observing?
Supernova survey efficiency for SNAP and LSST:

- LSST is better at \(z < 0.7 \)
- SNAP is much faster for high-\(z \) objects

Brightness and B band wavelength of SNe Ia at peak

Brightness and V band wavelength of SNe Ia at peak

Discovery brightness to prevent Malmquist bias
Weak Lensing Survey Speed: including effects of galaxy size

Galaxies must be resolved for use in weak lensing analyses. HDF studies (Gardner & Satyapal, 2000) show that galaxies become much smaller at faint magnitudes.

Approximately 85% of galaxies with $r<30$ are between $r=27$ and 30....
A few conclusions

Many techniques required to constrain dark energy
All will be systematics limited
Sensitivity estimates should include reasonable systematics guesses
Only SNe have detected dark energy and faced systematics:
They will play a key role in the coming decade